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Summary. Ab initio variational calculations were performed on the rotationally 
resolved infrared spectrum of KNa~. A discrete potential energy surface was 
generated using the configuration interaction ansatz coupled with the frozen core 
approximation, from which an analytical representation was obtained using 
a power series expansion employing a Dunham expansion variable. This force field 
was embedded in an Eckart-Watson rovibrational Hamiltonian, from which 
eigenfunctions and eigenenergies were calculated. An SCF dipole moment surface 
was generated and used to calculate absolute line intensities and square dipole 
matrix elements between the vibrational ground state and the lowest-lying excited 
states for some of the most intense transitions within the P, Q and R branches. 
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1 Introduction 

Theoretical studies of alkali cluster ions have focussed on their electronic structure, 
stability and equilibrium geometry [-1]. Interest in these cluster ions is due to the 
significant role they play in a number of technological processes [2] (which in part 
arises from the low ionisation potentials and electron affinities of the alkali metal 
atoms). Although most investigations have centred on the homogeneous cluster 
ions [3], work on the heterogeneous species has gathered momentum (due to their 
observations in supersonic expansions [4, 5]). Recently, pseudopotential [-6, 7] and 
all electron methodologies [1, 8-11] have been utilised in studies of the electronic 
structure of clusters XzY+(X, Y=Li,  Na, K). Thus far, no experimental data is 
available on their rovibrational structure, although such information would be 
valuable with respect to their detection [2]. 

Over the last decade there has been a rapid increase in computer power. 
Nevertheless, attempts of solving the "complete" molecular Schrodinger equation 
are still not common place (even for electron-sparse molecules). Here "complete" is 
defined in terms of the construction of a Born-Oppenheimer potential energy (PE) 
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surface to variationally solving a rovibrational Hamiltonian [12]. Perhaps the 
most celebrated example in the literature is the unravelling of the rovibrational 
structure for the ground electronic state of H~. Quantal investigations near the 
potential energy minimum of its infrared spectrum have predicted and substan- 
tiated experimental observations [13, 14]. Yet it still appears that quantal calcu- 
lations resolving the spectra near the ion dissociation energy [15] of this simple 
two-electron system will not be forth coming in the immediate future. 

For electron-dense molecules, more speculative configuration interaction (CI) 
surfaces need to be constructed. Basis set limitations and simple CI truncations 
have to be employed in order to make computations tractable. For example, in the 
case of H 2 0  + Weis et al. [ 16] employed a truncated multiconfigurational reference 
CI (MRCI) wavefunction in order to calculate a 50 point discrete PE surface (which 
Wang and von Nagy-Felsobuki [17] used in their subsequent rovibrational calcu- 
lations). Further, PE surfaces have been constructed using even simpler CI trun- 
cations (such as from single and double substitutions from a single reference 
Hartree-Fock determinant; labelled SDCI). For molecules involving second and 
third row atoms even more drastic approximations are often employed; that is, the 
CI sub-space is usually truncated to the valence molecular orbitals (coined the 
"frozen-core" approximation; labelled FC). Alternatively for X2Y + (X, Y = Li, Na, 
K) clusters, Pavolini and Spiegelmann [7] have resorted to a pseudopotential CI 
methodology in which core--core and core-valence interactions are replaced by 
simple functional forms, thereby alleviating the need to incorporate all the elec- 
trons in the calculations. All of these approaches have a common thread: to 
produce PE surfaces which are tractable, yet spectroscopically predictive. 

In the case of triatomic molecules, the Eckart-Watson rovibrational Hamil- 
tonians are problematic [8-12, 18], since Eckart's notion of an embedded equilib- 
rium geometry necessarily precludes a smooth transition in the mass dependent 
operator (termed the Watson operator) for bent and linear nuclear configurations 
[19, 20]. This led Tennyson and Sutcliffe [21] to develop a rovibrational Hamil- 
tonian in terms of a body-fixed scattering coordinate system. On the other hand, 
yon Nagy-Felsobuki and coworkers [8] have developed the most general form of 
the Eckart-Watson Hamiltonian, which is applicable to bent triatomic systems not 
undergoing large amplitudes of vibration. The rovibrational Hamiltonian is based 
on rectilinear displacement coordinates for a molecule with Cs symmetry and so 
collapses to the D3h and Czv Hamiltonians developed by Carney et al. [22, 23]. 

Recently, it was demonstrated that for Li +, the scattering coordinate 
Hamiltonian and solution algorithm of Tennyson and Sutcliffe [24] yielded essen- 
tially the same vibrational band origins near the potential energy minimum as the 
normal coordinate approach developed by yon Nagy-Felsobuki and coworkers 
[25]. These vastly different solution algorithms (employing the same electronic 
force field 1-26, 27]) gave the same assignment and moreover, yielded the first ten 
vibrational band origins of 7Li~ and 6LiVLi~ to within 0.03 cm-1 respectively. 
Thus, both approaches have properly converged in describing the small amplitudes 
of vibration for this molecule. 

As an extension of our earlier work on the rovibrational structure of Li~- [8, 9, 
25-27], LizNa + [8, 9], LiNa~ [8, 9], KLiNa + I-8, 9], KzLi + [10] and Na~ [11], we 
wish to report a variational calculation of the rotational energy levels of the 
low-lying vibrational states for the ground electronic state of KNa~. Although the 
PE surface reported here is speculative, the motivation for this investigation is to 
encourage and moreover, possibly assist experimentalist in detecting and identify- 
ing the rovibrational structure of KNa~. 
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2 Computational details and results 

Ab initio electronic calculations were performed using the GAUSSIAN 88 suite of 
programmes [28] within the SDCI/FC ansatz. Size-consistency cannot be proi0erly 
accounted for using the Davidson's correction [29], since the frozen-core approx- 
imation reduces the correlation problem to a two-electron problem. 

For sodium, Huzinaga and Klobukowski [30] (16s, 9p) primitive basis was 
used and supplemented with diffuse d and f polarisation functions (both with 
a partially optimised exponent of 0.16) yielding a (16s9pldlf)/[lOs6pldlf] con- 
tracted basis. Similarly for potassium, a primitive basis (20s13p) [30] was em- 
ployed, supplemented with d andfpolarisation functions with partially optimised 
exponents of 0.16 and 0.09 respectively. This gives a (20sl3pldlf/15s8pldlf) 
contracted basis set. Similar basis sets have been employed in generating the PE 
surfaces of Li2Na + [8], LiNa~ [8], KLiNa + [8], K2Li + [10] and Na~ [11]. 

To select electronic grid on the energy hypersurface the strategy employed was 
to choose points coincident with the quadrature points required by our numerical 
potential energy integrator (which in our case is the Harris, Engerholm and Gwinn 
or HEG quadrature scheme [31]), thereby reducing the errors associated with the 
analytical fit. A set of data points were initially calculated along the diagonal of 
each vibrational coordinates, within the prescribed integration limits of the numer- 
ical HEG scheme. To these points an analytical function was fitted, giving a pre- 
liminary surface from which 8000 HEG quadrature points could be selected. 
Electronic energies were calculated at a vastly reduced subset of points near the 
potential energy minimum, with additional points calculated in selected regions in 
order to ensure a "well behaved" analytical surface [8]. Table 1 details the full 66 
point discrete PE surface of KNa +. 

In numerical rovibrational calculations it is important that the embedded force 
field accurately interpolates between calculated points on the energy hypersurface. 
In order to obtain an accurate analytical representation of the discrete ab initio 
surface, various power series expansions [32-36] and Pad~ approximant expan- 
sions [35-36] were examined. Of all the analytical representations investigated, the 
sixth-order power series expansion with the Dunham expansion variable was 
found to give the "best" [8] fit. In order to ensure that the analytical PE surface was 
free from singularities in the integration region, it was necessary to zero the 
singular values o.4z, o44-48. Table 2 lists the analytical representation of the PE 
surface of KNa +, which was used in the subsequent vibrational and rovibrational 
calculations. Figure 1 gives the corresponding contour plots of the PE surface in 
terms of rectilinear vibrational coordinates (labelled at t coordinates). 

The vibrational Hamiltonian used in this investigation is the t coordinate 
Hamiltonian derived by Carney et al. [23]. The Hamiltonian has the form 

h2 ~ ~2 h 2 / ~ ~ x~2 h2 
- - - -  7-775 t3 - -  -- t2 ---- - - -  H= 2M, i= i&:  2i::(t,) t ~?t2 &3) 8 ~  # ~ + p '  

(1) 

where the first term is the vibrational kinetic energy operator, the second term is 
the vibrational angular momentum operator and the third term is the Watson 
operator, which is a mass dependent contribution to the potential energy operator 
(the latter given by the last term). 

The Watson operator is the sum of the diagonal elements of the reciprocal 
effective moment of the inertial tensor and a perturbation expression for this 
operator was derived by yon Nagy-Felsobuki and coworkers [10] in terms of the 



134 F. Wang and E, I. v. Nagy-Felsobuki 

Table 1. Discrete potential energy surface of the ground electronic state of KNa~ 

RNa- r, ja.u. RNa,- r, Ja.u. RNa- Na,/a.u. E/Eh 

7.8284 7.8284 6.3098 -922.7840 
8.0151 8.0151 6.4615 -922.7838 
7.6417 7.6417 6.1605 -922.7837 
8.2951 8,2951 6.6872 -922.7828 
7.3617 7,3617 5.9347 -922.7824 
8.7618 8,7618 7.0635 -922.7798 
6.8950 6.8950 5.5585 -922.7768 
9.2285 9,2285 7.4397 -922,7756 
6.4283 6.4283 5.1823 -922,7654 
9.6952 9.6952 7.8159 -922.7707 
5.9616 5.9616 4.8060 -922.7459 

10.6286 10.6286 8.5684 -922.7601 
5.0282 5.0282 4.0536 -922.6706 
7.7752 7.7753 6.5430 -922.7838 
7.8845 7.8845 6.0789 -922.7837 
7.7009 7.7012 6,8911 -922,7828 
7,9738 7.9741 5.7309 -922.7823 
7.5921 7.5934 7.4712 -922.7801 
8.1361 8.1373 5.1508 -922.7760 
7.5029 7.5057 8.0512 -922.7767 
8,3143 8.3168 4.5707 -922.7625 
7.4340 7.4391 8.6313 -922,7732 
8,5075 8.5118 3.9907 -922.7384 
7.3592 7.3706 9.7915 -922.7672 
7.6790 7.9807 6.3162 -922.7839 
8.2036 7.4495 6.3351 -922.7834 
7.0857 8.5932 6.4216 -922.7818 
8.9598 6.7004 6.5393 -922,7788 
6.3559 9.3652 6.7334 -922.7744 

10,1058 5.6075 7.1940 -922.7593 
7,9619 6,6935 6.2669 -922.7805 
8.0711 8.0712 6.2294 -922.7838 
7.5886 7.5886 6.3925 -922.7837 
7,6978 7.6979 5.9285 -922.7833 
8.5215 8.5226 8,2236 -922.7748 
9.0660 9.0670 5.9033 -922.7793 
6.5815 6.5847 7.2988 -922.7721 
7.3905 7.3934 3.8183 -922.7288 
9.2703 9.2743 10.1363 -922.7614 

10.3504 10.3540 5.4956 -922.7693 
9.5659 9.5662 8.3960 -922.7681 
8.1649 7.8632 6.4646 -922.7837 
7.4923 7.7940 6.1659 -922.7836 
9.5138 8.0061 7.1532 -922.7787 
5.7875 8.0460 5.8317 -922,7684 

11.2046 8.1927 8.1435 -922.7688 
9.3222 10.4921 8.0484 -922.7681 

11.9674 7.4592 8.5422 -922.7654 
7,6248 7.9285 6.5481 -922.7837 
8.0332 7.7338 6,0823 -922.7837 
6.8237 8,3796 7.5649 -922.7769 
9.2299 7.0587 5.4282 -922.7756 
5.8633 9.0422 8.9448 -922,7575 
7.0404 7.8394 8.6526 -922.7722 
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Table 1. (Continued) 
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RNa- r, ja.u. RN~,- K/a.u. R ~ -  Na,/a.u. E/Eh 

10.6404 6.5277 5.2774 -922.7652 
7.7881 8.5543 7.2927 -922.7805 
8.0739 8.8153 6.1373 -922.7824 
7.8759 7.1369 5.3832 -922.7782 
6.8552 7.6228 6.5429 -922.7813 
7,7114 10.8679 10.4060 -922.7589 
9,7008 13.8070 6.1853 -922.7671 
7,6978 12.4814 12.5518 -922.7514 
9.2169 6.8902 8.0318 -922.7731 
4.5789 6.9285 6.2206 -922.7303 
9.2021 8.4165 9.7754 -922.7653 
7.8549 10.7089 5.8191 -922.7759 

Table 2. Fitting coefficients of the sixth-order Dunham potential energy surface of KNa~ ~ 

Expansion variable b Coefficient Expansion variable b Coefficient 

1 -922.784 ^4_ +^4p  -0.007 PaPa P2 3 
Pl +P2 0.000 4- 4 P 1 P3 + P2 P3 0.042 
P3 0.000 3 2 2 a pxpz+plP2 --0.265 
p2+p2 0.116 p3 ~2 +pa2p ~ -0.121 $ 2 1D3 
p2 0.157 2 3  2 3  plp3+p2pa --0.189 3 

3 3 PiP2 0.001 plp2P3+plp2p3 --0.262 
P2 P3 + Pl P3 -- 0.002 Pl P2 p3 0.027 
pa+p3 --0,282 p2p22p 3 0.046 1 2 
pa - 0 . 3 2 3  2 2 2 2 3 p l P 2 p a + p l P 2 P 3  0,545 

2 2 ^6q_p6 - -0 .137  plp2+p2pl --0.016 Pl 2 
P~P3 + p22pa - -  0.018 p63 - -  0.010 

P, P~ + P2Pl -0.011 P~ P2 + PS2Pl 0.068 
PlP2P3 0.116 pSlp3+p~p3 0.052 

4 4- 5 5 
P l  + P 2  0.321 - -0 .139  P l P a + P 2 P 3  
p4 0.344 4. 2 4 2 PiP2 +P2Px -0 .120 3 

3 3 4 2 4 2 plp2 +p2Pl 0.077 plP3 +p2p3 --0.241 
3p 2,* 24- PI a +PaPa 0.032 0.331 PlP3 + P 2 P 3  

PlP~ + P2P~ 0.043 p~p2p3 + p~plp3 -0.006 
p~p~ 0.237 plp2p 4 0.010 
p2p2 z 2 p3p3 --0.189 1 3+PzP3 0.011 1 2 

2 2 3 3 3 3 
Pl P2P3 + Pl  PZ P3 -- 0.023 p l p a + p E p a  0.304 

P l P2P32 - 0.324 p~p2pa + p2p23 Pa - 0.087 
p~+p~ -o.o23 p~pzp~+;Mpl o.151 
p~ --0.176 P~PzP~ +plp2p~ 0.043 
p4p2 4 --0.124 2 2p2 + P 2 P l  PiP2 3 - -0 .148  
(X2) 1/2 -7 .374 x 10 - s  

a SVD analysis is used [23, 32] with singular values 342, ~r44_48 being set to zero 
b Dunham expansion variable has form: (RI-R,)/Re where Ri and Re are the instantaneous and 
equilibrium bond distances respectively 
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Fig. 1. Tw0-dimensional constant potential energy plots for the 6th order power series expansion using 
a Dunham expansion variable. The singular values a#2 , a44-o4s are zeroed 

t coordinates. A third-order Taylor series expansion for this operator is incorpor- 
ated in the vibrational Hamiltonian, thereby circumventing difficulties which arise 
from the embedded singularities [-8-12, 18]. 

The algorithm for our variational solution can be described as follows. The 
three one-dimensional eigenfunctiong were obtained from a finite-element solution 
of a one-dimensional Hamiltonian expressed in terms of a single t coordinate. The 
first-order expansion of the Watson operator is diagonal in t coordinates and so 
was employed in the one-dimensional Hamiltonians. For each t coordinate, 1000 
finite-elements were constructed within the following domains: tl [ -3 .0 ,  4.2], 
t 2 I--2.2, 4.8], t3 [ -4 .0 ,  4.0]. A three-dimensional configuration basis was then 
constructed from the three one-dimensional eigenfunctions [-37]. The three-dimen- 
sional basis set was determined from all configurational products containing less 
than or equal to 13 nodes. Hence a total of 560 basis functions were employed in 
the three-dimensional solution. In the case of the three-dimensional Hamiltonian, 
the third-order expansion of the Watson operator was employed. The potential 
energy integrals were numerically evaluated using the HEG scheme [31], whereas 
all other integrals were evaluated using a sixteen point Gauss quadrature scheme. 
Finally, the secular determinant was constructed using Eq. (1) and diagonalised to 
yield vibrational eigenfunctions and eigenenergies, both of which are required for 
the rovibrational problem. Table 3 assigns the 20 lowest-lying vibrational band 
origins of KNa + using the solution algorithm. 

The rovibrational Hamiltonian, spanned by the vibration basis set, is given 
by E23] 

ĤVR--ij -- E, ( S),j+ O.5 ( A )fjFI ~ + O.5( B )fjFI ~ 

+0.5(C>ijrlaz +O.5(D>q(FIxFlr+[IyFlx)+i/h(F>,jFlz, (2) 

where Ei is the ith "pure" vibrational eigenenergy, (S> u is the vibrational overlap 
integral and / l ' s  are the rotational angular-momentum operators, whose compo- 
nents refer to the molecule-fixed coordinate system. The A-D vibrational matrices 
are symmetric. The (D> and < A ) - ( B )  matrix elements couple adjacent odd or 
even values of K. The F matrix represents the Coriolis coupling that splits levels 
with non-zero K values (i.e. z axis angular momentum component) in this presence 
of vibrational angular momentum. Table 4 gives rotational matrix elements involv- 
ing the lowest five vibrational eigenfunctions with the 0.5 factor in Eq. (2) being 
incorporated in the rotational constants and so they are labelled as A'-D'. 
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Table 3. Vibrational band origins of KNa~- (/cm- l) 
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~)1~)2V3 Symmetry % weight a Vibrational band origin b 

000 A1 98.2 0.00 
001 B1 96.7 70.91 
100, 010 Ai 47.9, 45.8 85.57 
010, 100 Ai 50.2, 47.3 136.95 
002 A1 93.7 141.52 
101, 011 B1 45.1, 42.5 155.53 
110, 200, 020 A1 41.9, 22.8, 19.9 170.85 
011, 101 B1 49.6, 46.6 207.64 
003 B1 88.9 211.87 
020, 200 A1 48.3, 45.2 222.05 
102, 012 Ai 40.3, 37.4 225.18 
111,201, 021 B1 36.4, 20.1, 16.9 239.90 
210, 120, 300 A1 27.5, 25.0, 10.5 255.86 
110, 020, 200 A1 47.0, 25.5, 23.5 272.85 
012, 102 A1 47.3, 45.6 278.03 
004 A1 82.5 281.95 
021, 201 Bi 45.5, 42.7 291.82 
103, 013 B1 33.9, 30.7 294.55 
030, 300, 120 A1 32.8, 31.2, 12.9 306.87 
112, 202, 022 A1 28.7, 15.9, 13.1 308.67 

" % Weight = {C~/2 C2) 1/2 X 100 
b The zero-point energy of KNa~ is 147.85 cm -1 

Table 4. Rotational and Coriolis matrix elements of KNa + ( /cm- i). 

Matrix A' B' C' D' F b 
element 

1 1 0.1314 0.0555 0.0389 -0.9648 - 11 
2 1 0.0000 0.0000 0 . 0 0 0 0  -0 .3991-02 
2 2 0.1321 0.0553 0.0387 0.1269-11 
3 1 0.0021 -0.0027 -0.0012 0.4237-12 
3 2 0.0000 0.0000 0 . 0 0 0 0  -0 .5816-03 
3 3 0.1313 0.0553 0.0388 0.6334-11 
4 1 0.0079 0.0004 0.0009 --0.6971 - 12 
4 2 0.0000 0.0000 0.0000 -- 0.2790 - 03 
4 3 - 0.0003 0.0003 0.0001 0.3095 -- 11 
4 4 0.1306 0.0555 0 . 0 3 8 8  -0.5256--11 
5 1 0.0001 0.0003 0.0001 0.2066-11 
5 2 0.0000 0.0000 0 . 0 0 0 0  -0 .5643-02 
5 3 0.0002 --0.0001 0.0000 0.3206-10 
5 4 0.0001 0.0000 0.0000 0.3208- l i  
5 5 0.1328 0.0551 0.0386 0.1246-09 

0.1519--19 
0.1483-03 
0.5334-19 
0.6954 - 10 
0.5405-01 
0.1175-18 
0.7836-10 
0.5766-01 

-0 .1875-10 
-- 0.7897-- 19 
-- 0.4834-10 
--0.9185-02 
--0.7302 - 10 

0.3717--11 
-0.3243--18 

"The entry -0 .3243-18 represents -0.3243 x 10 -18 
b The F matrix elements have the relationship F(i,j)= -F(j, i) 
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Table 5. Rotational energy levels of KNa2 + for low-lying vibrational states (/cm = 1) 

E~ 0.000 70.906 85.573 136.947 141.525 

J K. K~ 
1 0 1 0.094 0.094 0.094 0.094 0.094 
1 1 1 0.170 0.171 0.170 0.169 0.172 
1 1 0 0.187 0.187 0.187 0.186 0.188 

2 0 2 0.281 0.281 0.279 0,281 0.280 
2 1 2 0.343 0.343 0.341 0.341 0.344 
2 1 1 0.392 0.392 0.391 0.392 0.392 
2 2 1 0.620 0.623 0.619 0.617 0.626 
2 2 0 0.622 0.625 0.622 0.619 0.628 

3 0 3 0.555 0.554 0.551 0.554 0.554 
3 1 3 0.599 0.601 0.596 0.598 0.601 
3 1 2 0.699 0.698 0.697 0.698 0.697 
3 2 2 0.903 0.906 0.901 0.900 0.908 
3 2 1 0.915 0.917 0.913 0.912 0.919 
3 3 1 1.326 1.332 1.324 1.319 1.338 
3 3 0 1.326 1.332 1.324 1.319 1.338 

4 0 4 0.910 0.911 0.905 0.909 0.912 
4 1 4 0.940 0.941 0.934 0.937 0.942 
4 1 3 1.104 1.102 1.100 1.103 1.101 
4 2 3 1.279 1.281 1.275 1.275 1.283 
4 2 2 1.312 1.313 1.309 1.310 1.314 
4 3 2 1.707 1.713 1.704 1.701 1.719 
4 3 1 1.709 1.715 1.706 1.702 1.720 
4 4 1 2.293 2.304 2.291 2.281 2.316 
4 4 0 2.293 2.304 2.291 2.281 2.316 

5 0 5 1.344 1.345 1.336 1.342 1.346 
5 1 5 1.361 1.363 1.353 1.358 1.365 
5 1 4 1.604 1.602 1.598 1.603 1.600 
5 2 4 1.745 1.747 1.739 1.741 1.749 
5 2 3 1.817 1.816 1.811 1.815 1.816 
5 3 3 2.186 2.191 2.180 2.179 2.196 
5 3 2 2.192 2.196 2.187 2.185 2.201 
5 4 2 2.770 2.781 2.766 2.758 2.792 
5 4 1 2.770 2.781 2.766 2.758 2.792 
5 5 1 3.523 3.541 3.520 3.504 3.559 
5 5 0 3.523 3.541 3.520 3.504 3.559 

T h e  r o t a t i o n a l  basis  used  was  the  p lus  a n d  m i n u s  c o m b i n a t i o n s  of  the  r egu la r  
s y m m e t r i c  t o p  e i g e n f u n c t i o n  as de t a i l ed  by  C a r n e y  et al. [23].  T h e  a d v a n t a g e  o f  
R~k,~ basis  is t h a t  the  c o r r e s p o n d i n g  m a t r i x  e l emen t s  s p a n n i n g  the  a n g u l a r  m o -  
m e n t u m  o p e r a t o r s  a re  real .  R o v i b r a t i o n a l  e igen func t ions  a n d  e igenenerg ies  were  
o b t a i n e d  by  d i a g o n a l i s a t i o n  H vR. T a b l e  5 gives the  v a r i a t i o n a l l y  c a l cu l a t ed  ro t a -  
t i ona l  e igenenerg ies  up  to  J equa l s  5 for  the  l o w - l y i n g  v i b r a t i o n a l  states.  T o  ensure  
c o n v e r g e n c e  of  the  ca l cu l a t ed  e igenenerg ies ,  fu r the r  ca l cu l a t i ons  were  e m p l o y e d  
us ing  t en  v i b r a t i o n a l  e igen func t i ons  a n d  to  the  s a m e  J level.  I t  was  f o u n d  tha t  us ing  
five a n d  ten  v i b r a t i o n a l  e igen func t ions  the  m e a n  difference for  all the  r o t a t i o n a l  
level  is 0.001 c m - 1 .  
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Table 6. Spectroscopic constants of KNa2 + for the lowest five vibrational states (MHz) 
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x -0.6411 -0.6445 -0.6432 -0.6362 -0.6497 
A + C  -0.5105+04 0.5126+04 0.5098+04 0.5080+04 0.5147+04 
A - C  0.2773+04 0.2795+04 0.2778+04 0.2753+04 0.2816+04 
~AAAA --0.0429 0.1191 --0.2563 --0.0104 0.2785 
~B~BB -0.0705 -1.1764 0.8858 0.1847 --1.6919 
Tcccc 0.1126 0.8181 -0.7161 --0.1644 1.2460 
%ACC 0.7377 6.4148 --5.3407 --1.1815 9.7972 
ZBBCC 0.0976 0.5462 --0.5073 --0.1229 0.8522 
TAABB -0.8290 -6.8499 5.8783 1.3705 -10.4893 

Reduction distortion constants 

Aj 0.0142 0.1322 -0.0787 -0.0218 
AjK -0.0441 -0.4243 0.2285 0.0489 
AK 0.0018 0.0876 0.0292 0.0140 
~j --0.0017 --0.0810 0.0714 0.0122 
6~ --0.2668 --0.5737 --1.4227 --0.5330 

First-order centrifugal distortion constants 

D j  0.0625 0.5272 -0.4264 -0.1020 
DjK --0.3338 --2.7947 2.3148 0.5301 
DK 0.2431 2.0630 --1.7094 --0.3870 
6j --0.0017 --0.0810 0.0714 0.0122 
R5 0.2028 0.8527 0.2126 0.1506 
R 6 0.0241 0.1975 -0.1739 -0.0401 

0.1767 
-0.5700 

0.0819 
-0.1231 
-0.7199 

0.7881 
-4.2385 

3.1390 
-0.1231 

1.2310 
0.3057 

Table 7. Expansion coefficients for dipole moment surface of KNa~-" 

Expansion Px Expansion #r 
variable variable 

1 -0.88809 t3 0.89173 
tl + t2 0.49456 t3(tx + t2) --0.07601 
(t  I + t2) 2 O. 12916 t~ -- 1.68282 
t~ 1.42193 t3(t  I + t2) 2 - 0.51101 
(q + t2)3 - 0.34344 t~(tl + t2) 1.14828 
t2(ta + t2) 1.83491 t3(q + t2) 3 1.41193 
(q + t2) 4 - O. 10140 t~ 2.29763 
t34 -- 1.98692 t3 (tl + t2) 4 - 0.61511 
t~(tl + t2) 2 - -  2.86799 t](t~ + t2)2 2.40774 
(tl + t @  0.11370 
t34(q + t2) -- 8.14873 
t](tl + t2) 3 3.43453 

a All entries in atomic units 

T a b l e  6 gives  the  s p e c t r o s c o p i c  c o n s t a n t s  for  K N a ~  o b t a i n e d  us ing  a leas t -  
squa re s  fit to the  r o v i b r a t i o n a l  e igenenergies .  T h e  de f in i t ion  o f  the  r e d u c e d  
H a m i l t o n i a n s  has  b e e n  g iven  by  W a t s o n  [38].  T h e  f u n d a m e n t a l  f r equenc ies  a n d  
a n h a r m o n i c  c o n s t a n t s  c o u l d  n o t  be  o b t a i n e d  wi th in  r e a s o n a b l e  p rec i s ion  us ing  
a s imple  l eas t - squares  f i t t ing p r o c e d u r e ,  s ince c o n f i g u r a t i o n  e igen func t i ons  a re  
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Table 8. Vibrational transition frequencies, square dipole matriX elements, Einstein coefficients a, band 
strengths a and radiative lifetimes for KNa~ a 

S ..b ,Ce j i v~i gj2 Aiib B jib J, 
/cm -1 /D 2 /s -1 /1016 cmZerg-1 s -2 /atm-1 cm -2 /s 

1 0 70.91 0.13+00 0.0141 23.7236 3.565 
2 0 85.57 0.17+03 0.0000 0.0317 0.007 
3 0 136.95 0.58 -01  0.0467 10.9286 5.298 
4 0 141.52 0.13--01 0.0118 2.4954 1.279 
5 0 155.53 0.35--03 0.0004 0.0663 0.040 
6 0 170.85 0.30--03 0.0005 0.0566 0.040 
7 0 2 0 7 . 6 4  0.29-03 0.0008 0.0553 0.053 
8 0 2 1 1 . 8 7  0.82--03 0.0024 0.1539 0.153 
9 0 222.05 0.35 - 0 4  0.0001 0.0066 0.007 

8.78 
12.80 
6.51 
9.30 

10.30 
14.47 
11.53 
10.44 
16.58 

a Calculated at 300 K 
b See ref. [27, 43, 49] for the formulae associated with the quantifies 
b Lifetime of the upper state. See ref. [27, 49] for the formula 

Table 9. Rovibrational absorption line intensities (at 300 K) for ground states of KNa~ 

v' J' K~, K[ v" J" K'~ K[' Branch VAX a Sax b R]x c 
P,Q,R 

0 3 3 0 0 4 0 4 - 1  0.42 0.139-06 0.264+01 
0 4 2 2 0 4 0 4 0 0.40 0.192-06 0.391+01 
0 4 3 2 0 3 3 1 1 0.38 0.189-06 0.426+01 

1 1 1 0 0 2 2 1 - 1 70.47 0.159-03 0.124+00 
1 3 1 2 0 3 1 2 0 70.91 0.161-03 0.124+00 
1 4 1 3 0 3 1 3 1 71.41 0.177-05 0.135-02 

2 3 3 1 0 4 4 1 - 1 84.60 0.299-06 0.168 - 0 3  
2 2 1 2 0 2 2 1 0 85.29 0.305 - 0 6  0.167-03 
2 4 2 3 0 3 1 2 1 86.15 0.301-06 0.168 - 0 3  

3 2 1 1 0 3 1 3 - 1  136.74 0.253-05 0.605-03 
• 3 3 3 1 0 3 2 1 0 137.35 0.233-03 0.554-01 
3 3 2 2 0 2 2 0 1 137.22 0.236 - 0 3  0.560-01 

4 2 2 0 0 3 1 3 --1 141.55 0.631--06 0.142-03 
4 3 3 1 0 3 1 2 0 142.16 0.590-04 0.132-01 
4 3 3 0 0 2 2 1 1 142.24 0.587--04 0.131-01 

a Difference of eigenenergies between rovibrational states labelled as A and X, where A and X represent 
the upper and lower rovibrational states. All entries in unit of cm- 1 

b Band strengths between rovibrational states labelled as A and X, where A and X represent the upper 
and lower rovibrational states. All entries in unit of atm -1 cm -2. See ref. [161 for formula used 
° Square of the dipole matrix element spanned by the rovibrational states are labelled as AX, where 
A and X represent the upper and lower rovibrational states. All entries in unit of D 2 

suff ic ient ly  " m i x e d "  to  p r e c l u d e  a s imp le  a s s i g n m e n t  to  a s ingle  c o m p o n e n t  of  t he  
c o n f i g u r a t i o n a l  bas is .  H o w e v e r ,  f o l l owing  the  usua l  p r e s c r i p t i o n  [39, 40]  s o m e  o f  
t he  s p e c t r o s c o p i c  c o n s t a n t s  were  o b t a i n e d  f r o m  l e a s t - s q u a r e s  fits o f  r o t a t i o n a l  
e n e r g y  levels  u s ing  the  first  five v i b r a t i o n a l  s ta tes .  
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Difficulties were encountered using the GAUSSIAN 88 package in the genera- 
tion of the CI dipole moment surface [41]. Hence ab initio calculations of the 
discrete dipole moment surface of the ground electronic state of KNa + were 
performed at the Hartree-Fock SCF level. A 51 point dipole moment surface was 
calculated in terms of the t coordinates [10]. The grid used for the dipole moment 
surface differed from that used for the electronic energy calculations only with 
respect to its size. Points well away from the minimum energy geometry (i.e. 
displacements larger than 1.5 a.u.) were excluded in order to facilitate a more 
precise fit to an analytical representation. The geometry at each data point was 
rotated and/or reflected in order to coincide with the Eckart framework. The 
molecule was situated in the xy plane, with the origin coinciding with the centre of 
mass and the positive x axis bisecting the included angle for the C2v symmetry. 
Table 7 gives the calculated regression coefficients for KNa~ using the t coordinate 
expansion [10]. The coefficients clearly show that the non-linear regions are 
significant, since the linear coefficient is not necessarily the largest coefficient. 
However, it should not be forgotten that the fit represents an optimal regression 
and so reflects its utility as an interpolating function. 

The vibrational eigenenergies, eigenfunctions and dipole moment functions 
were used in order to calculate the dipole moment matrix elements, Einstein 
transition probabilities (Aji and Bji), band strengths (Sji) and vibrational radiative 
lifetimes (z). Table 8 lists these quantities together with the calculated transition 
frequencies. The dipole transition matrix elements are calculated using the varia- 
tional eigenfunctions and the transition matrix elements individual line intensities 
were calculated using the usual formula [42, 43] spanned by the rovibrational basis 
set. Table 9 gives the variationally calculated rovibrational absorption line inten- 
sities of KNa~ for a selected number of transitions. 

3 Discussion 

There are few investigations on the electronic structure of the ground state of 
KNa~. Pavolini and Spiegelmann [7] have optimised its geometry using a small 
basis set within a pseudopotential CI framework. Pseudopotential models cannot 
rigourously account for core-core and core-valence correlation effects, since they 
seek to reduce the all-electron problem to a valency only problem [44-46]. On the 
other hand, our approach for electronic studies on electron-dense systems [8-12] 
is to use sizeable basis sets within the all-electron SDCI/FC ansatz. A single 
reference treatment is justified if the leading coefficients in the CI wavefunction 
are large and nearly constant at small displacements from the equilibrium ge- 
ometry. In the case of the positive ions of the alkaline-earth oxides, fluorides and 
hydroxides Partridge et al. [47] have shown that SDCI wavefunction is capable of 
yielding accurate spectroscopic parameters when compared with experiment. Justi- 
fication from employing the FC approximation is less satisfactory on theoretical 
grounds. However, comparison of the low-lying vibrational band origins of Li) " 
using SDCI/Full with the SDCI/FC levels of theory [8] does give some credence 
for using the more tractable theory in the case of the electron-dense systems, 
provided that it is used in regions of small rectilinear displacements from the 
minimum. 

At SDCI/FC level of theory the minimum energy structure of KNa~ is of 
C2v symmetry with an energy of -992.7840Eh. The predicted equilibrium struc- 
tural parameters (RKN,, NaKNa bond angle) are (7.83ao, 47.55 °) which compares 
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well with the Hartree-Fock pseudopotential value of (7.16ao, 46.51 °) [6] and 
pseudopotential CI value of (7.58ao, 47.40 °) [7]. Absolute differences in the pre- 
dicted structural parameters between the two CI levels theory are (0.25ao, 0.15°), 
which is in the range of differences between the pseudopotential CI method and 
other all-electron calculations. For example, in the case of Na3 absolute differences 
of (0.10ao, 11.5 °) occur [7]. 

The quadrature points used by the HEG numerical potential energy integrator 
were weighted to be coincident with the points of the discrete electronic energy 
surface in order to minimise the error of fit at these points of the energy hypersur- 
face. Further, it should be stressed that the power series with the smallest (Xz) 1/2 is 
not necessarily the "best" fit to a PE surface [8, 35, 36], since numerical graphical 
inspections confirm that non-physical behaviour (e.g. singularities) can occur in the 
numerical integration region for fits with low (X2) 1/2. It is therefore important that 
the analytical representation is consistent with anticipated physical properties 
[8, 35, 36]. Previously, for Li2Na +, LiNa~, KLiNa + and Na~, von Nagy-Felsobuki 
and coworkers [8, 10] have detailed Pad6 force fields of order P(6,4), P(4,5), P(3,3) 
and P(4,6) with ()~2)1/2 of 2.5 x 10- 7, 3.8 x 10- 7, 4.4 x 10- 5 and 3.5 x 10- 5Eh respec- 
tively. However, for K2Li ÷ [11] the force field used was a power series expansion 
using the exponential Dunham variable which yielded a (X2) 1/2 of 2.57 x 10 -¢ Eh. 
For KNa~ Pad6 force fields for an array of different expansion variables and for 
different numerator and denominator orders could not eliminate singularities (even 
using SVD) in the integration region. Therefore, for KNa~ a simple Dunham force 
field yielded the "best" result with (Z2) 1/2 of 7.4 x 10- s Eh. As anticipated this more 
massive molecule resembles more nearly a spherical well for small rectilinear 
displacements from the PE minimum. Figure 1 demonstrates that the surface is 
smooth everywhere and with monotonically increasing repulsive walls within the 
integration region. 

Vibrational band origins have been calculated for KNa~ up to ,,~310 cm-1 
The assignment is given in terms of the configurational basis in Table 3. The 
vibrational Hamiltonian used in this investigation has "full" mechanical anhar- 
monicity as well as operators coupling the t vibrational modes. Hence, the assign- 
ment of the vibrational band origins is no longer simple since mixing can occur for 
configurational basis functions belonging to the same irreducible representation. 
That is, the configurational basis function (10 1) can readily mix with the (0 1 1), 
(0 0 3) etc. because each of these basis functions has B1 symmetry. Therefore, the 
three-dimensional wavefunction for this delocalised model can no longer be ex- 
pected to be diagonal in terms of the configurational basis functions. The percent- 
age by weight of a basis function in the wavefunction given in Table 3 further 
emphasises this point. Using the percentage by weight as an assignment criterion 
the sequence of the five lowest-lying vibrational band origins are (00 1)<(100, 
010) < (0 10, 10 0) < (0 0 2) < (101, 0 1 1), which is basically similar to the sequence 
given for LiNa~ [8-1, although the second and third vibrational band origins have 
reversed their positions. For Li2Na ÷ [8] the same sequence has the (0 10) vibra- 
tional band origin lower in energy to the (200), whereas for K2Li ÷ [10] the 
vibrational eigenfunctions are far more "mixed". Nevertheless, it should be added 
that care needs to be taken against an over zealous interpretation due to the 
possibility of basis set incompleteness, even though our exploratory calculations 
showed convergence of the rotational levels to within 0.001 cm- 1. It is clear from 
the above discussion that the harmonic approximation within the framework of 
uncoupled modes (whilst intuitive) is far too simplistic for interpretation of the 
dynamics of this molecule. 
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Table 4 gives the rotational and Coriolis matrix elements spanned by the lowest 
five vibrational states. The centrifugal distortion are expected to be small near the 
potential energy minimum and the calculations reflect this anticipation by yielding 
values of less than 10-9 cm-~ for the diagonal elements. As would be anticipated, 
the off-diagonal elements of the Coriolis matrix elements are much larger than the 
diagonal elements, the latter of which are of order 10-18 cm-1. 

Table 5 highlights rotational energy levels for KNa ~ with respect to the lowest 
five vibrational states. The limiting case for the rotational levels of KNa + is 
Mulliken's prolate symmetric top. This is reflected by the Ray's asymmetry para- 
meter, which is calculated to be -0.64 for the lowest-lying five vibrational states. 
Similarly, for Li2Na + [8], LiNa~ [8] and K2Li + [10] Ray's asymmetry parameter 
is calculated to be -0.68, -0 .82 and -0.99 respectively. Hence, the rotational 
energy levels (given in Table 5) are assigned within this framework of a prolate 
symmetric top and are calculated up to the J equals 5 level. 

As high resolution rovibrational spectra are generally assigned by fitting 
rovibrational data to reduced Hamiltonians [38-40], Table 6 summarizes the 
calculated rotational spectroscopic constants obtained from our ab initio force 
fields and moreover, using our calculated rovibrational states. The calculations 
neglect spin-rotation interactions. Nevertheless, the signs and magnitude of these 
constants should be of use experimentalists in the spectroscopic rovibrational 
detection KNa~-. 

As the dipole moment surface was calculated at the Hartree--Fock level the 
accuracy of the calculated transition probabilities, band strengths and vibrational 
radiative lifetimes must be treated with caution. However, Green [48] has con- 
cluded that at the Hartree-Fock limit the error associated with a dipole moment 
for a neutral diatomic molecule with a single sigma bond and using a double zeta 
basis set augmented with polarisation functions is of the order 0.1 to 0.2 D. The 
basis set used for KNa~ certainly meets this criterion, although it is deficient with 
respect to producing a Hartree-Fock limit. Further, KNa~ is bonded via single 
sigma bonds and so meets Green's [48] second criteria. Nevertheless, what is not 
known is the error variation of the dipole moment hypersurface over small 
amplitudes of displacements. There are too few discrete dipole moment surfaces 
reported in order to yield a estimate of the magnitude of error associated with a 
dipole hypersurface at the Hartree-Fock level, let alone at a CI level. Table 7 
indicates that the linear expansion variables are not necessarily dominant and so 
care needs to be taken, since the error may not be uniform nor of the order of 0.2 D 
for small rectilinear displacements from the minimum energy. Moreover, it should 
also be noted that the accuracy of the slope of the dipole moment function is essen- 
tial for calculation of the transition dipole matrix elements and so the presence 
of a non-uniform error would further degrade the spectroscopic quality of the 
surface. 

Table 8 gives the calculated Einstein transition probabilities, band strengths 
and vibrational radiative lifetimes using vibrational eigenfunctions and eigenener- 
gies. The transition probabilities and band strengths are given with respect to 
transitions from the ground vibrational state to the low-lying excited vibrational 
states. The life times given in Table 8 are for the upper states of the indicated 
transitions and so are the sums of the rates of spontaneous emission to all the 
lower-lying levels. For the C2v point group there are no infrared forbidden 
transitions in the lowest-lying vibrational states, unlike Li~ which has D3h sym- 
metry [49]. Hence the lifetimes of the excited vibrational states of KNa ~ are small 
for these transitions compared with those of Li~ [49]. 
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Contributions from the vibrational partition function were not neglected and 
were incorporated in the integrated adsorption band intensity which is given by 
[43, 49], 

Sji =roe2 Njfj~i (1 - e x p ( -  hvji)) 
Qv mc2p kT ' (3) 

where the quantities in this equation have their usual meanings. Furthermore, the 
total partition function was used in order to determine the rotational line inten- 
sities, the formula of which is given Weis et al. [16]. Table 9 gives the absolute line 
intensities and the squares of the electric dipole transition matrix elements for some 
of the most intense transitions within the P, Q and R branches between the 
vibrational ground state and lowest-lying four excited vibrational states of KNa ~. 

A portion of the rovibrational transitions should be experimentally accessible 
via laser spectroscopy, although no such data is currently available in the literature. 
Hence, it is hoped that these calculations will assist in the experimental spectro- 
scopic detection of this molecule and moreover, will promote even more extensive 
theoretical calculations. 
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